CORRIGENDA: "FINITENESS THEOREMS FOR POSITIVE DEFINITE *n*-REGULAR QUADRATIC FORMS", TRANS. AMER.

MATH. SOC. **355** (2003), 2385-2396.

WAI KIU CHAN AND BYEONG-KWEON OH

ABSTRACT. This note contains a possibly incomplete list of typos found in the paper. We also include some comments to clarify a few arguments used in the proofs of the main results there.

- (1) Lemma 2.3(2): When $\frac{dM}{4}\equiv 5 \text{ mod } 8,\, \lambda_4(L)_2\cong M_2^3\perp N_2^{\frac{1}{2}}.$
- (2) Lemma 3.1: Let q be a prime such that $q \nmid 2k\delta$.
- (3) Lemma 3.3: The sublattice M can be any sublattice of rank k < n. In the proof, there exists $y \in L$ such that $Q(y) \le \mu_{k+1}(L)$ and $y \notin \mathbb{Q}M$. Then $\delta y \in M \perp M^{\perp}$. Write $\delta y = x + z$ where $x \in M$ and $z \in M^{\perp} \setminus \{0\}$. Therefore, $\delta^2 \mu_{k+1}(L) \ge \delta^2 Q(y) \ge Q(z) \ge a$.
- (4) Page 2390, at the end of first line: $\mu_{k+1}(L) \leq C\mu_k(\ell)$, where C is a constant depending only on k."
- (5) Page 2390, near the end of the first paragraph of the proof of Lemma 3.4: " $\mu_k(\tilde{K}) \leq \tilde{C}\mu_{k-1}(\tilde{K}) \leq ...$, where \tilde{C} , C_1 , C_2 , C_3 , and hence A, depend only on ℓ , L, and M."
- (6) In the proof of Lemma 3.5: (1) $q_i \in (\mathbb{Z}_p^{\times})^2$ for all $p \mid (dK)(dM)$ and $q_i \equiv 1 \pmod{8}$.
- (7) Section 4: The lattice L should be an n-regular lattice of rank n+3 where $n \geq 3$ instead of $n \geq 2$ as claimed at the beginning of that section. This is because we cannot apply Lemma 3.4 to bound $\mu_5(L)$ in the proof of Lemma 4.1 when n=2. However, this does not affect any subsequent arguments.
- (8) In the proof of Proposition 4.2, second paragraph: "we must have $3p^2 \le dM$."
- (9) In the proof of Proposition 4.2, third paragraph: "If rank $(G) = k \ge 4$, then $p^{2(k-2)} \le dG \le 8(2p-2)^{k-2}$ and thus p is bounded."

1

- (10) The end of the third paragraph of the proof of Lemma 4.2: "These four binaries do not represent 6, 4, 10 and 6 respectively. Therefore, $p \le 5$."
- (11) Page 2392, 2nd paragraph: One can use [1, Corollary 3.2] to bound the first three minima of L. Moreover, M is not necessary a 4×4 section of L. It can be any quaternary sublattice of L whose discriminant is bounded.
- (12) Page 2392, proof of Theorem 1.1 (n = 2), three lines after (2): N'_q is represented by L_q , not L_p as written.
- (13) Page 2392, proof of Theorem 1.1 (n = 2), at the end of third paragraph: " $\mathbb{Q}_q N_q' \longrightarrow \mathbb{Q}_q M_q$."
- (14) Page 2392, proof of Theorem 1.1 (n = 2), fourth paragraph: " $\mu_5(L) \le \max\{q^{\alpha}\mu_2(N), \mu_4(M)\}$."
- (15) Page 2393: Equality (1) when q = 2 means that s and -u'v' are in the same square class in \mathbb{Z}_2^{\times} . Same comment applies to equality (2).
- (16) Page 2393, near the end of the second paragraph: " $\mathbb{Q}_q N_q \longrightarrow \mathbb{Q}_q M_q$."
- (17) Page 2393, at the end of the third paragraph: It is clear that $\lambda_{2q}(L) = \Lambda_{2q}(L)^r$, where $r = \frac{1}{q}$ or $\frac{1}{q^2}$. Note that whenever $\mathfrak{s}(L) = 2\mathbb{Z}$ or $Q(L_q) \neq 2\mathbb{Z}_q$, $\Lambda_{2q}(L)$ is just $\{x \in L : Q(x) \in 2q\mathbb{Z}_q\}$ and hence $\Lambda_{2q}(M)$ is a sublattice of $\Lambda_{2q}(L)$. We replace L by $\lambda_{2q}(L)$ and M by $\Lambda_{2q}(M)^r$ (which is not necessarily equal to $\lambda_{2q}(M)$). Repeat this process until L_q is split by \mathbb{H} .
- (18) Page 2393, at the end of the fourth paragraph: Alternatively, one could argue that by assumption M_p must be represented by $\mathbb{A} \perp \mathbb{A}^p$ and hence $\langle a \rangle$ must be represented by $\langle p^k \epsilon \rangle$. Therefore, $\operatorname{ord}_p(a) \geq k$ and we may simply take η to be the smallest even integer greater than or equal to $\operatorname{ord}_p(a)$.
- (19) Page 2393, last paragraph: "Let $r \nmid 2dL$ be a prime ..."
- (20) Page 2394, first displayed inequality: " $p^{\text{ord}_p(a)} \leq (dM)^2 \max\{2t, 2W, \mu_4(M)\}$."
- (21) Page 2394, after the first displayed inequality: "If $2W \leq \max\{2t, \mu_4(M)\}$,"
- (22) Page 2394, second displayed inequality: " $p^{\text{ord}_p(a)} \leq \frac{2t^2(dM)^2}{t-2p^{\eta-\text{ord}_p(a)}r(dM)^2}$."
- (23) Page 2394/2395, in the proof of Theorem 1.2 and Theorem 1.3: It suffices to take M to be a ternary sublattice of L whose discriminant is bounded.

References

[1] W.K. Chan, A.G. Earnest, and B.-K. Oh, Regularity properties of positive definite integral quadratic forms, Algebraic and arithmetic theory of quadratic forms, 59-71, Contemp. Math., **344**, Amer. Math. Soc., Providence, RI, 2004.

Department of Mathematics and Computer Science, Wesleyan University, Middletown CT, 06459, USA

 $E\text{-}mail\ address{:}\ \mathtt{wkchan@wesleyan.edu}$

DEPARTMENT OF MATHEMATICAL SCIENCES AND RESEARCH INSTITUTE OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY, SEOUL 151-747. Korea

 $E ext{-}mail\ address: bkoh@snu.ac.kr$